#![allow(dead_code)]
use anyhow::bail;
use serde::de::{self, Deserialize, Deserializer, Visitor};
use std::fmt;
pub fn rgb<C: From<Rgba>>(hex: u32) -> C {
let r = ((hex >> 16) & 0xFF) as f32 / 255.0;
let g = ((hex >> 8) & 0xFF) as f32 / 255.0;
let b = (hex & 0xFF) as f32 / 255.0;
Rgba { r, g, b, a: 1.0 }.into()
}
pub fn rgba(hex: u32) -> Rgba {
let r = ((hex >> 24) & 0xFF) as f32 / 255.0;
let g = ((hex >> 16) & 0xFF) as f32 / 255.0;
let b = ((hex >> 8) & 0xFF) as f32 / 255.0;
let a = (hex & 0xFF) as f32 / 255.0;
Rgba { r, g, b, a }
}
#[derive(PartialEq, Clone, Copy, Default)]
pub struct Rgba {
pub r: f32,
pub g: f32,
pub b: f32,
pub a: f32,
}
impl fmt::Debug for Rgba {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "rgba({:#010x})", u32::from(*self))
}
}
impl Rgba {
pub fn blend(&self, other: Rgba) -> Self {
if other.a >= 1.0 {
return other;
} else if other.a <= 0.0 {
return *self;
} else {
return Rgba {
r: (self.r * (1.0 - other.a)) + (other.r * other.a),
g: (self.g * (1.0 - other.a)) + (other.g * other.a),
b: (self.b * (1.0 - other.a)) + (other.b * other.a),
a: self.a,
};
}
}
}
impl From<Rgba> for u32 {
fn from(rgba: Rgba) -> Self {
let r = (rgba.r * 255.0) as u32;
let g = (rgba.g * 255.0) as u32;
let b = (rgba.b * 255.0) as u32;
let a = (rgba.a * 255.0) as u32;
(r << 24) | (g << 16) | (b << 8) | a
}
}
struct RgbaVisitor;
impl<'de> Visitor<'de> for RgbaVisitor {
type Value = Rgba;
fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
formatter.write_str("a string in the format #rrggbb or #rrggbbaa")
}
fn visit_str<E: de::Error>(self, value: &str) -> Result<Rgba, E> {
Rgba::try_from(value).map_err(E::custom)
}
}
impl<'de> Deserialize<'de> for Rgba {
fn deserialize<D: Deserializer<'de>>(deserializer: D) -> Result<Self, D::Error> {
deserializer.deserialize_str(RgbaVisitor)
}
}
impl From<Hsla> for Rgba {
fn from(color: Hsla) -> Self {
let h = color.h;
let s = color.s;
let l = color.l;
let c = (1.0 - (2.0 * l - 1.0).abs()) * s;
let x = c * (1.0 - ((h * 6.0) % 2.0 - 1.0).abs());
let m = l - c / 2.0;
let cm = c + m;
let xm = x + m;
let (r, g, b) = match (h * 6.0).floor() as i32 {
0 | 6 => (cm, xm, m),
1 => (xm, cm, m),
2 => (m, cm, xm),
3 => (m, xm, cm),
4 => (xm, m, cm),
_ => (cm, m, xm),
};
Rgba {
r,
g,
b,
a: color.a,
}
}
}
impl TryFrom<&'_ str> for Rgba {
type Error = anyhow::Error;
fn try_from(value: &'_ str) -> Result<Self, Self::Error> {
const RGB: usize = "rgb".len();
const RGBA: usize = "rgba".len();
const RRGGBB: usize = "rrggbb".len();
const RRGGBBAA: usize = "rrggbbaa".len();
const EXPECTED_FORMATS: &'static str = "Expected #rgb, #rgba, #rrggbb, or #rrggbbaa";
let Some(("", hex)) = value.trim().split_once('#') else {
bail!("invalid RGBA hex color: '{value}'. {EXPECTED_FORMATS}");
};
let (r, g, b, a) = match hex.len() {
RGB | RGBA => {
let r = u8::from_str_radix(&hex[0..1], 16)?;
let g = u8::from_str_radix(&hex[1..2], 16)?;
let b = u8::from_str_radix(&hex[2..3], 16)?;
let a = if hex.len() == RGBA {
u8::from_str_radix(&hex[3..4], 16)?
} else {
0xf
};
const fn duplicate(value: u8) -> u8 {
value << 4 | value
}
(duplicate(r), duplicate(g), duplicate(b), duplicate(a))
}
RRGGBB | RRGGBBAA => {
let r = u8::from_str_radix(&hex[0..2], 16)?;
let g = u8::from_str_radix(&hex[2..4], 16)?;
let b = u8::from_str_radix(&hex[4..6], 16)?;
let a = if hex.len() == RRGGBBAA {
u8::from_str_radix(&hex[6..8], 16)?
} else {
0xff
};
(r, g, b, a)
}
_ => bail!("invalid RGBA hex color: '{value}'. {EXPECTED_FORMATS}"),
};
Ok(Rgba {
r: r as f32 / 255.,
g: g as f32 / 255.,
b: b as f32 / 255.,
a: a as f32 / 255.,
})
}
}
#[derive(Default, Copy, Clone, Debug)]
#[repr(C)]
pub struct Hsla {
pub h: f32,
pub s: f32,
pub l: f32,
pub a: f32,
}
impl PartialEq for Hsla {
fn eq(&self, other: &Self) -> bool {
self.h
.total_cmp(&other.h)
.then(self.s.total_cmp(&other.s))
.then(self.l.total_cmp(&other.l).then(self.a.total_cmp(&other.a)))
.is_eq()
}
}
impl PartialOrd for Hsla {
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
Some(
self.h
.total_cmp(&other.h)
.then(self.s.total_cmp(&other.s))
.then(self.l.total_cmp(&other.l).then(self.a.total_cmp(&other.a))),
)
}
}
impl Ord for Hsla {
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
unsafe { self.partial_cmp(other).unwrap_unchecked() }
}
}
impl Hsla {
pub fn to_rgb(self) -> Rgba {
self.into()
}
pub fn red() -> Self {
red()
}
pub fn green() -> Self {
green()
}
pub fn blue() -> Self {
blue()
}
pub fn black() -> Self {
black()
}
pub fn white() -> Self {
white()
}
pub fn transparent_black() -> Self {
transparent_black()
}
}
impl Eq for Hsla {}
pub fn hsla(h: f32, s: f32, l: f32, a: f32) -> Hsla {
Hsla {
h: h.clamp(0., 1.),
s: s.clamp(0., 1.),
l: l.clamp(0., 1.),
a: a.clamp(0., 1.),
}
}
pub fn black() -> Hsla {
Hsla {
h: 0.,
s: 0.,
l: 0.,
a: 1.,
}
}
pub fn transparent_black() -> Hsla {
Hsla {
h: 0.,
s: 0.,
l: 0.,
a: 0.,
}
}
pub fn white() -> Hsla {
Hsla {
h: 0.,
s: 0.,
l: 1.,
a: 1.,
}
}
pub fn red() -> Hsla {
Hsla {
h: 0.,
s: 1.,
l: 0.5,
a: 1.,
}
}
pub fn blue() -> Hsla {
Hsla {
h: 0.6,
s: 1.,
l: 0.5,
a: 1.,
}
}
pub fn green() -> Hsla {
Hsla {
h: 0.33,
s: 1.,
l: 0.5,
a: 1.,
}
}
pub fn yellow() -> Hsla {
Hsla {
h: 0.16,
s: 1.,
l: 0.5,
a: 1.,
}
}
impl Hsla {
pub fn is_transparent(&self) -> bool {
self.a == 0.0
}
pub fn blend(self, other: Hsla) -> Hsla {
let alpha = other.a;
if alpha >= 1.0 {
return other;
} else if alpha <= 0.0 {
return self;
} else {
let converted_self = Rgba::from(self);
let converted_other = Rgba::from(other);
let blended_rgb = converted_self.blend(converted_other);
return Hsla::from(blended_rgb);
}
}
pub fn fade_out(&mut self, factor: f32) {
self.a *= 1.0 - factor.clamp(0., 1.);
}
}
impl From<Rgba> for Hsla {
fn from(color: Rgba) -> Self {
let r = color.r;
let g = color.g;
let b = color.b;
let max = r.max(g.max(b));
let min = r.min(g.min(b));
let delta = max - min;
let l = (max + min) / 2.0;
let s = if l == 0.0 || l == 1.0 {
0.0
} else if l < 0.5 {
delta / (2.0 * l)
} else {
delta / (2.0 - 2.0 * l)
};
let h = if delta == 0.0 {
0.0
} else if max == r {
((g - b) / delta).rem_euclid(6.0) / 6.0
} else if max == g {
((b - r) / delta + 2.0) / 6.0
} else {
((r - g) / delta + 4.0) / 6.0
};
Hsla {
h,
s,
l,
a: color.a,
}
}
}
impl<'de> Deserialize<'de> for Hsla {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: Deserializer<'de>,
{
let rgba = Rgba::deserialize(deserializer)?;
Ok(Hsla::from(rgba))
}
}
#[cfg(test)]
mod tests {
use serde_json::json;
use super::*;
#[test]
fn test_deserialize_three_value_hex_to_rgba() {
let actual: Rgba = serde_json::from_value(json!("#f09")).unwrap();
assert_eq!(actual, rgba(0xff0099ff))
}
#[test]
fn test_deserialize_four_value_hex_to_rgba() {
let actual: Rgba = serde_json::from_value(json!("#f09f")).unwrap();
assert_eq!(actual, rgba(0xff0099ff))
}
#[test]
fn test_deserialize_six_value_hex_to_rgba() {
let actual: Rgba = serde_json::from_value(json!("#ff0099")).unwrap();
assert_eq!(actual, rgba(0xff0099ff))
}
#[test]
fn test_deserialize_eight_value_hex_to_rgba() {
let actual: Rgba = serde_json::from_value(json!("#ff0099ff")).unwrap();
assert_eq!(actual, rgba(0xff0099ff))
}
#[test]
fn test_deserialize_eight_value_hex_with_padding_to_rgba() {
let actual: Rgba = serde_json::from_value(json!(" #f5f5f5ff ")).unwrap();
assert_eq!(actual, rgba(0xf5f5f5ff))
}
#[test]
fn test_deserialize_eight_value_hex_with_mixed_case_to_rgba() {
let actual: Rgba = serde_json::from_value(json!("#DeAdbEeF")).unwrap();
assert_eq!(actual, rgba(0xdeadbeef))
}
}