1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
use crate::SharedString;
use anyhow::{anyhow, Context, Result};
use collections::HashMap;
pub use no_action::NoAction;
use serde_json::json;
use std::{
any::{Any, TypeId},
ops::Deref,
};
/// Actions are used to implement keyboard-driven UI.
/// When you declare an action, you can bind keys to the action in the keymap and
/// listeners for that action in the element tree.
///
/// To declare a list of simple actions, you can use the actions! macro, which defines a simple unit struct
/// action for each listed action name.
/// ```rust
/// actions!(MoveUp, MoveDown, MoveLeft, MoveRight, Newline);
/// ```
/// More complex data types can also be actions. If you annotate your type with the action derive macro
/// it will be implemented and registered automatically.
/// ```
/// #[derive(Clone, PartialEq, serde_derive::Deserialize, Action)]
/// pub struct SelectNext {
/// pub replace_newest: bool,
/// }
///
/// If you want to control the behavior of the action trait manually, you can use the lower-level `#[register_action]`
/// macro, which only generates the code needed to register your action before `main`.
///
/// ```
/// #[gpui::register_action]
/// #[derive(gpui::serde::Deserialize, std::cmp::PartialEq, std::clone::Clone, std::fmt::Debug)]
/// pub struct Paste {
/// pub content: SharedString,
/// }
///
/// impl gpui::Action for Paste {
/// ///...
/// }
/// ```
pub trait Action: 'static {
fn boxed_clone(&self) -> Box<dyn Action>;
fn as_any(&self) -> &dyn Any;
fn partial_eq(&self, action: &dyn Action) -> bool;
fn name(&self) -> &str;
fn debug_name() -> &'static str
where
Self: Sized;
fn build(value: serde_json::Value) -> Result<Box<dyn Action>>
where
Self: Sized;
}
impl std::fmt::Debug for dyn Action {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("dyn Action")
.field("type_name", &self.name())
.finish()
}
}
impl dyn Action {
pub fn type_id(&self) -> TypeId {
self.as_any().type_id()
}
}
type ActionBuilder = fn(json: serde_json::Value) -> anyhow::Result<Box<dyn Action>>;
pub(crate) struct ActionRegistry {
builders_by_name: HashMap<SharedString, ActionBuilder>,
names_by_type_id: HashMap<TypeId, SharedString>,
all_names: Vec<SharedString>, // So we can return a static slice.
}
impl Default for ActionRegistry {
fn default() -> Self {
let mut this = ActionRegistry {
builders_by_name: Default::default(),
names_by_type_id: Default::default(),
all_names: Default::default(),
};
this.load_actions();
this
}
}
/// This type must be public so that our macros can build it in other crates.
/// But this is an implementation detail and should not be used directly.
#[doc(hidden)]
pub type MacroActionBuilder = fn() -> ActionData;
/// This type must be public so that our macros can build it in other crates.
/// But this is an implementation detail and should not be used directly.
#[doc(hidden)]
pub struct ActionData {
pub name: &'static str,
pub type_id: TypeId,
pub build: ActionBuilder,
}
/// This constant must be public to be accessible from other crates.
/// But it's existence is an implementation detail and should not be used directly.
#[doc(hidden)]
#[linkme::distributed_slice]
pub static __GPUI_ACTIONS: [MacroActionBuilder];
impl ActionRegistry {
/// Load all registered actions into the registry.
pub(crate) fn load_actions(&mut self) {
for builder in __GPUI_ACTIONS {
let action = builder();
//todo(remove)
let name: SharedString = remove_the_2(action.name).into();
self.builders_by_name.insert(name.clone(), action.build);
self.names_by_type_id.insert(action.type_id, name.clone());
self.all_names.push(name);
}
}
/// Construct an action based on its name and optional JSON parameters sourced from the keymap.
pub fn build_action_type(&self, type_id: &TypeId) -> Result<Box<dyn Action>> {
let name = self
.names_by_type_id
.get(type_id)
.ok_or_else(|| anyhow!("no action type registered for {:?}", type_id))?
.clone();
self.build_action(&name, None)
}
/// Construct an action based on its name and optional JSON parameters sourced from the keymap.
pub fn build_action(
&self,
name: &str,
params: Option<serde_json::Value>,
) -> Result<Box<dyn Action>> {
//todo(remove)
let name = remove_the_2(name);
let build_action = self
.builders_by_name
.get(name.deref())
.ok_or_else(|| anyhow!("no action type registered for {}", name))?;
(build_action)(params.unwrap_or_else(|| json!({})))
.with_context(|| format!("Attempting to build action {}", name))
}
pub fn all_action_names(&self) -> &[SharedString] {
self.all_names.as_slice()
}
}
/// Defines unit structs that can be used as actions.
/// To use more complex data types as actions, annotate your type with the #[action] macro.
#[macro_export]
macro_rules! actions {
() => {};
( $name:ident ) => {
#[derive(::std::cmp::PartialEq, ::std::clone::Clone, ::std::default::Default, gpui::serde_derive::Deserialize, gpui::Action)]
pub struct $name;
};
( $name:ident, $($rest:tt)* ) => {
actions!($name);
actions!($($rest)*);
};
}
//todo!(remove)
pub fn remove_the_2(action_name: &str) -> String {
let mut separator_matches = action_name.rmatch_indices("::");
separator_matches.next().unwrap();
let name_start_ix = separator_matches.next().map_or(0, |(ix, _)| ix + 2);
// todo!() remove the 2 replacement when migration is done
action_name[name_start_ix..]
.replace("2::", "::")
.to_string()
}
mod no_action {
use crate as gpui;
actions!(NoAction);
}