use anyhow::anyhow;
use tiktoken_rs::CoreBPE;
use util::ResultExt;
use crate::models::{LanguageModel, TruncationDirection};
#[derive(Clone)]
pub struct OpenAILanguageModel {
name: String,
bpe: Option<CoreBPE>,
}
impl OpenAILanguageModel {
pub fn load(model_name: &str) -> Self {
let bpe = tiktoken_rs::get_bpe_from_model(model_name).log_err();
OpenAILanguageModel {
name: model_name.to_string(),
bpe,
}
}
}
impl LanguageModel for OpenAILanguageModel {
fn name(&self) -> String {
self.name.clone()
}
fn count_tokens(&self, content: &str) -> anyhow::Result<usize> {
if let Some(bpe) = &self.bpe {
anyhow::Ok(bpe.encode_with_special_tokens(content).len())
} else {
Err(anyhow!("bpe for open ai model was not retrieved"))
}
}
fn truncate(
&self,
content: &str,
length: usize,
direction: TruncationDirection,
) -> anyhow::Result<String> {
if let Some(bpe) = &self.bpe {
let tokens = bpe.encode_with_special_tokens(content);
if tokens.len() > length {
match direction {
TruncationDirection::End => bpe.decode(tokens[..length].to_vec()),
TruncationDirection::Start => bpe.decode(tokens[length..].to_vec()),
}
} else {
bpe.decode(tokens)
}
} else {
Err(anyhow!("bpe for open ai model was not retrieved"))
}
}
fn capacity(&self) -> anyhow::Result<usize> {
anyhow::Ok(tiktoken_rs::model::get_context_size(&self.name))
}
}